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The diffraction of a plane wave by a plate stiffened by a rib of small - wave 
dimension is considered. The problem is reduced to an integral equation of 
the second kind for the pressure at the rib surface. Principles of contractive 
mappings are applied to the equation in the long-wave range. Approximate 

formulas are derived for the directivity pattern of the field dispersed in the 
fluid and for the pressure at the rib surface. 

The diffraction of sound at a plate with a stiffening rib was investigated in [ 1,2 1, 
and the effect of the rib wave properties on the plate emission was considered in [ 3 J. 
The feasibility of compensating the emission of a plate stiffened by a rib by the appli - 

cation of additional forces was discussed in [ 4 1. A common simplifying feature of all 
these investigations is the neglect of sound reflection by the rib surface, i. e. it was as- 
sumed that the rib affects only the conditions under which oscillations of the reinforced 

plate occur. 

In the present investigation the effect of the rib reflecting surface on the diffraction 
field is taken into account, The directivity pattern of the field generated by the inci - 
dence of a plane wave on the plate and emitted into the fluid and the pressure distri - 

bution on the rib surface are determined. Effects of plate thickness, rib height, and of 
the plane wave incidence angle on power emission to the fluid is investigated, Limits 
of applicability of the approximate analysis of diffraction processes without allowance 
for the reflection of sound from the rib surface are discussed. 

1. Let a plane wave of pressure P, = exp (- iot + ikcoX - ikWhmpinge on 
plate (-- 00 < z < 00, y = 0) withrib {z = 0, 0 < y < h}.Hereco = ~0s CPO, 
so = sin ~0, go is the incidence angle read from the semiaxi& > 0 and k is the wave 

number in the fluid. The problem is assumed plane ,and the dependence on timeexp(- j,“t) 
(0 is theoscillation frequency) is neglected. pressure P (5, y) (y > 0) in the iluid sat- 
isfies the Helmholtz equation with the following boundary conditions ar the plate [l, 51: 

where k. is the wave number of the plate flexural oscillations, p. is the fluid density, 
D is the plate cylindrical stiffness, 6 (x) is the delta function [ 61 t and B and C 

are the so-called boundary-contact constants determined by conditions at the rib-to-plate 
interface. In what follows the wave dimensions of the rib are assumed small and con - 
sequently its wave properties may be disregarded, i.e. it can be assumed that the rib 
moves as a whole s performing longitudinal oscillations along the I,! -axis and rotations 
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about an axis passing through the coordinate origin and normal to the XY -plane, Using 

the equations of motion of the rib subjected to a discontinuity of the shear stress at its 
joint to the plate and, also, of the bending moment I and the difference of pressure on 

both sides of the rib, we obtain the following boundary-contact conditions : 

W,(O, 0) = [Pv,,r_(O, O)l (1.2) 

- ~&/x (07 0) = f PI/, 64 qr t 46 f s ip (0, s)1 ds 

0 

2, = ~~~~~~Z/~, z-2 = p~~~~~~2 I (3D) 

The symbol if (0)l denotes the discontinuity of function f (z) at transition through 
point 2 = 0. In (1.2 > Z1 and 2s are rib impedances [ 1,3 ] , PI is the density of the 
rib material, and Hi is its thickness, The boundary condition at the surface of the os- 
cillating rib is derived from the condition of bonding and is of the form 

p, (0, Y) = - YPvr (0, 0) @<Y<4 (1.3) 

We separate from the complete field the incident wave and the wave reflected by 
the homogeneous plate ( R are coefficients of reflection) 

P (5, y) = exp (&c&r - h0y) +R exp (ikcoz + &soy) + Q (z, y) 

R=f(c$ - a) is,--bl I(ce4 -a) isa -+ bl-1, a = k,e / k.*, b=q6 / 65 

The dissipated field is constructed in conformity with the principle of limit ab - 

sorption * and must satisfy the Meixner condition “at the rib” [7]. In the zero approxi- 

mation, in which diffraction at the rib surface is neglected ) the field determined by the 
method described in [ 1 ] is 

Qok, Y) = - iks, (1 - R) i exp [ ihs - y (lb) y] >: (1.4) 
-co 

L(h) -= (h4 - k,?) y (5) - 45, y(h) = p??-=T 

The branch of radical y (h) and the integration contour are selected in conformity 
with the principle of limit absorption [ 5 1. When determining the field Qo , the inte - 

gral term in Eq. (1,2 ) and condition (1.3 ) are neglected, Such simplification is a 

feature of all preceding investigations. One of the aims of the present paper is to ex- 

amine its validity, 

2. Thefield w=Q-Q o related to the diffraction at the rib surface satisifes 
the Helmholtz equation with boundary condition (1.1) on the plate, condition 

WX (0, Y) + Y~~X (O,O) = g (Y) (0 < Y < 4 (2.1) 
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1 m 
J 

2,l - ZJr/Z, [! 
$yP(-_y(wl) d%/$j] 

--co 

I, = is, (co4 - a) + b 

on the rib surface, and the homogeneous boundary-contact conditions (1.2 ) , We intro- 
duce in the analysis the plate displacements 0 (2) generated by the pressure field 

w (5, y): g (4 = wy (x, 0) / (pod). These displacements satisfy the differential 
equation and boundary conditions 

fl”” (4 - &r4B (4 -!- +- w (X7 0) = B6 (2:) i_ C6’(r) (-55<5<00) C2.2) 

2$(O) - @” (O)] = 0, - zzB’(0)-[~(O)l-~iBIW(O,S)IdS=O 
(2.3 > 

0 

The pressure field w (2, y) is represented in the form of the sum 

w(w4) = +-pow2 i H~‘(k~(2-~)~i2il)B(s)ds+u(~,~)= (2.4) 
--m 

- + po”“Hp) * j3 + u (IL., y) 

where the asterisk indicates the operation of convoluting functions [ 61, 
As a result, for the plate d~placem~~ we obtain the integro-differential equation 

~convolution is calculated for y = 0) 

fY (5) - ko’fl (5) - + qwp *p -+(x,O)=BR6(2)+ a’(t) (2.5 > 

(--aJ<3:<m) 

while in bou~da~ conditions (2.3 ) the field u (0, s) is substi~ted for the field w (0, s) , 
The pressure field u (5, y) satisfies the Helmholtz equation with boundary conditions 

at the plate and rib 

uy(2,O) = 0 (-oC<Z<co) (2.6 > 

ux (0, Y) f PoW2Ys’ (0) = &?I (?f) (0 <Y < h) 

g1 (Y) = g (Y) i- + POW2 -& VG * 13> (0, Y) 

We have thus obtained a combination of the integro-differential equation (2.5) for 

plate displacements fi (x) and of the boundary value problem (2.6 ) for the pressure 

field u (2, y), These two problems are interconnected, since boundary conditions 
(2.6) contain the plate displacement term fi (x) and pressure appears in Eq. (2.5) as 
the load, Such reformulation of the input problem is convenient mainly because con - 
ditions (2.6 ) correspond to Neumann ‘s problem for which it is possible to derive simple 
long-wave approximations, 

3. It is possible to show that the field u (.z, y) is an odd function of the L.- co- 
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ordinate. Representing it in the form of an expansion in terms of plane waves and taking 
into account the first of boundary conditions (2.6 ) , we obtain 

W)=TP(V cos hy exp [ - y(h) 12 I] dh sign 5 (3.1) 
0 

Let us introduce in the anlaysis the pressure on the right-hand side of the rib surface 

S(Y)= u(+O,y)=~P(+osWh (3.2 > 
0 

Using the previously mentioned oddness of field u (r, Y) we find that 9 (Y) = 0 
when y > h, hence 

Ir 

p(h) =+\Ip(S)coshsds (3.3) 

0 

By formulating boundary conditions (2.6) in terms of function p (A) we obtain for 
these the dual integral equations 

‘Xl 

Ii p (A) cos hyy (A) dh = PoW2YB’ (0) - g1 (?A (0 < y < 4 (3.4) 
0 
00 

s 0 
p h coshydh=O (y>h) 

0 

that can be reduced to an integral equation of the second kind by setting y (h) = h + 
e (h) where e (h) = (h2 - k2)‘i2 - A, and convert the operator that corresponds to 

the paired equations after the substitution of h for y (A) (the conversion formula can 
be found, e. g., in [ 8 1). The final integral equation along the semiaxis 0 ( h < 00 
is of the form 

P (A) = - h2 i P (P) e (IL) 1 sJo (Ash) Jo (psh) dsdp - (3.5) 

0 0 

T 5 SJO (Ash) 1 +m2 [gl (qh) - Poo2B’ (o)s+l drlds 
0 0 

where JO (z) is a Bessel function. 
To obtain long-wave asymptotics it is more convenient to use the equation in terms 

of pressure 9 (y) at the rib surface. For this we, first of all, write the Fourier trans - 

formation jI/ (A,) of function p (z) in Eq. (2.5 ) in terms of function 9 (y). Then, 
taking into account condtions (2.3 ) and formulas (3.1) and (3.3 ), we obtain 

i /3(z) exp (- ihz) dx = 
h 

N (h) = %y;b) 1 Q, (L S) 9 (S) ds (3.6 > 

-0D 0 
0 (h, s) = & exp k- Y (h)sl - I 524 - wz, [Z(s) - $ s] 

m 

I(s) = 1 &j exP [ - sy @)I dP 
--00 
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Using the theorem on 
formulas (2.6 ) we obtain 

Fourier transformation of convolution I: 6 ] from the last of 

m 

gl (Y) = g (Y) + PO@’ &- s -+- oxp I--- y (A) YJ N (A) dh 

-cc 

(3.7 1 

Finally, applying the cosine transformation to the integral equation (3.5 ) and taking 

into account (3.2 ), (3,6), and (3.7 ) we obtain the required equation 

h 

s(y)=~k'(Y,~~Ip(~~~i-~o(Y) @<Y<hf (3.8) 
0 

Inspection of the integral equation (3.8 ) in the space of cont~nuo~ functions C [O, hl 
will show that when .e 4 0 (8 = kh) the norm of the related integral operator is of 

order 0 (ez In e) . This implies that in the case of a rib of fairly small wave dimen - 

sions the principle of contractive mappings is applicable to Eq. (3.8 ) . Note that the 
estimates obtained in [ 91 in connection with an investigation of long wave diffraction 

on a strip were used for proving the smallness of the norm. 

4. Equation (3,8 ) is exact and makes possible numerical calculation of the dif - 
fraction field. The expression for such field in terms of function ‘$ (y) is 

+?(h,s)dh+z~ CoshycoshsexpI--((h)fsIIdhsignz ds 
1 

0 

We restrict the derivation of the approximatesolution of &. (3.8 ) to the first iteration 

9(Y)=+o(Y) + ~K(y,s)rV,(s)~~+O(&‘ln&) 
0 

For calculating the integrals appearing there we use the asymptotic expansions 

I (s) = k-” [i,,, - .R& + s”d - s2 In s + 0 (s3)J (4.2) 
i,,, -2 A-“-” i.PJ 

mm 

2d = - i2,0 + ni + aio,o + bio,_r - 2 In y + 2 in 2 i- 3 
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where In y is the Euler’s constant and s -+ 0 , 
Formula (4.2 ) is based on the readily verified relation 

k2 fZ” (s) + Z (s)] = niHo (I) (s) + a&$ + bi,,, f 0 (4 

To prove formula (4.3 ) it is sufficient to expand the integral 

5 (VP= - p) Jo (+r) J0 (Wrl) du 

0 

in series in the small parameter 8 . 
After the substitution for the Bessel function of its integral representation we have 

to expand the integral 
Eo 

s 
(~--iK?. -p)exp(iepm)dl” 

0 

where m is a bounded quantity. This expansion can be obtained by introducing the 
subst~~ti~ bt = ch z and equating the obtained expression to the integral representa- 
tion of Henkel ‘s function, 

Omitting lengthy intermediate calculations, we present only the final results. The 

pressure on the rib surface is of the form 

r(g), f(t)= a-c/l -ty x 

4be 1 -- 
ca ia,* - zn/Gd 

(4.4) 

(co4 - a) so2 + 2b ! - In ‘& 
z2,1 - 2R& --a-- - 1 1 f 213 b 

- wt 
x 

Z2,l 

i 

I---42 

36 

b 

i 

c.0 
. 4 i2,l - 2n/& - s2?-l 

&=c04--a-b i2,o 

i2,l --7e2 ) 
+--g, c,==+- 

which conforms to Meixner ‘s condition ” at the rib ” [ 7 1. Similar formulas for pressure 

were obtained in the case of wave diffraction on a rigid or elastic strip [ lo]. 
At considerable distances from the plate the field Q (5, y) acquires the charact- 

eristics of a divergent cylindrical wave, Applying to the integrals in formulas ( 1.4 ) 
and (4.1) the method of steepest descent we obtain 
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where the function ‘i? (cp, ‘p4) may be considered as the representation of the direction- 
ality pattern of the field dissipated in the fluid and cp is the angle of observation taken 
from the semiaxis x > 0 

Y ($4 cpo) = Yo (cp, CpQ) - ,,,,,,@ {S& - $ X (4.5 > 

where the quantities s, C, t!, and ,$ are obtained from so, cO, l,, and 8, by the 

substitution of cp for T,, . 

5 l The diffraction field directionality patterns in terms of energy E (% yof = 
J I (cp, q+,) 1% were calculated by formula (4.5 ) , It was assumed that the steel plate 

and the steel stiffening rib were both of the same thickness Hi = H and were im- 

mersed in water. The dimensionless parameter 6 = kfl was varied from 0.02 to 
0.06 in steps of -0.005. In Fig. 1 the solid line represents the pattern for 6 = 0.06, 
a = 0.6, and Q, = 30” , while the dashed line shows the pattern calculated in the 

zero approximation, i. e. without allowance for sound reflection from the rib surface 

E, (cp, cpo) = I Yo (cpv (PO) I’* 
Allowance for reflection (from the rib ) results in the increase of power emitted in- 

to the fluid and in the change of direction of maximum emission by a certain angle AT. 
Values of angle Acp and of the ratio m = maxWE/max,E, of the indicated above 

patterns maxima for plates of various demensionless thickness d at incidence angles TO 

equal 10” , 30” s and GO* are tabulated below in columns A , B, and C , respectively. 
The dashes relate to angles Arp 2 10° and ratios m < Li. In these calculations the 

dimensionless rib height was assumed to be e= lUl). Hence in the case of fairly thin 

plates (S ,< 0.02 and 8 < 10 8) the allowance for sound reflection from the rib SW - 

face does not significantly affect the field, 
It is interesting to investigate the power .‘V emitted by the considered structure in- 

to the fluid n 7T 

iv @P*t = [ E (rp. 90) $9. 
b 

N, (rp0) = \’ f& (fp % ‘po~~rp 
ii 

Values of calculated N (%) are shown in Fig. 2, where curves 1,2, and 3 corres- 
pond to 6 = 0.04,0.05, and 0.06 ,respectively. Solid curves relate to ribs of height 

o = 10 6 and the dash lines to E = 7.5 6. The dependence of quantity 6 7 10 Ig (N 
, N0J which defines the error introduced in the determination of power by the calcula- 
tion of diffraction effects in the zero approximation, on the incidence angle is shown in 
Fig. 3, The numbering of these curves is consistent with the numbering in Fig. 2. The 
error of the approximate analysis increases with increasing parameter d and with the 
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Table 1 

A B C 
8.10, 

AV 
I 

nl Acp 
I 

m 4~ m 
1 

2 IQ” - 10’ - - - 

3 20” 1.29 15” 1.22 15” - 
4 20’ 1.96 25’ 1.78 2Y 1.31 
5 30” 2.52 30” 2.24 30” l.48 
6 40” 2.97 40” 2.57 30” 1.60 

Fig. 1 

a24 

Fig. 2 

Fig. 3 
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incidence approaching the glancing angle. 
Note that in the considered low-frequency range the reflection of sound from the 

rib surface results not only in an increase of the power emitted by the plate but, also, 
in its redistribution with respect to angles of emission, 

The diffraction of a plane wave by a plate stiffened by a rib and surrounded by 
fluid on both sides can be investigated in the same manner. 
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